KESETIMBANGAN UAP CAIR

(KUC)

Koordinator LabTK
Dr. Pramujo Widiatmoko
Kontributor:

Dr. Antonius Indarto, Dr. Ardiyan Harimawan, Gisela Swastika, Mirna Jatiningrum
DAFTAR ISI

DAFTAR ISI ... i
DAFTAR GAMBAR .. ii
DAFTAR TABEL ... iii
BAB I: PENDAHULUAN ... 1
BAB II: TUJUAN DAN SASARAN ... 2
 2.1 Tujuan ... 2
 2.2 Sasaran ... 2
BAB III: RANCANGAN PERCOBAAN .. 3
 3.1. Perangkat dan Alat Ukur ... 3
 3.2. Bahan .. 3
 3.3 Skema Alat Ebuliometer ... 3
BAB IV: PROSEDUR KERJA ... 5
 4.1 Diagram Alir Percobaan ... 5
 4.2 Prosedur Kerja Penggunaan Ebuliometer ... 6
DAFTAR PUSTAKA ... 8
LAMPIRAN A ... 9
LAMPIRAN B ... 12
LEMBAR KENDALI KESELAMATAN KERJA .. 13
DAFTAR GAMBAR

Gambar 3.1 Skema Alat Ebuliometer……………………………………………………………………… 4
Gambar 4.1 Diagram Alir Percobaan……………………………………………………………………… 5
Gambar A.1 .Contoh Kurva Kalibrasi Refraktometer………………………………………………… 10
DAFTAR TABEL

Tabel A.1 Kalibrasi Refraktometer ... 9
Tabel A.2 Tabel Percobaan .. 9
Tabel A.3 Contoh Kalibrasi Refraktometer .. 10
Tabel A.4 Contoh Data Percobaan ... 11
BAB I
PENDAHULUAN

Agar sasaran percobaan di atas dapat tercapai dengan baik, sebagai persiapan pembicaraan awal praktikan harus menguasai materi sebagai berikut:

2. Teknik-teknik pengukuran kesetimbangan uap cair (kesetimbangan fasa Walas 1985, Black 1987)
3. Pengujiannya konsistensi data kesetimbangan uap cair (Lu 1960)
5. Metoda analisis kromatografi gas dan index bias
BAB II
TUJUAN DAN SASARAN

2.1 Tujuan
Dengan melakukan praktikum Modul Kesetimbangan Uap Cair, praktikan mempelajari kesetimbangan fasa uap-cair sistem biner.

2.2 Sasaran
Setelah melakukan praktikum diharapkan:

1. Praktikan mempunyai pengalaman sehingga terampil dalam percobaan pengukuran kesetimbangan uap-cair.
2. Praktikan mampu melakukan perhitungan kesetimbangan uap-cair berdasarkan salah satu model termodinamika di literatur.
BAB III
RANCANGAN PERCOBAAN

3.1. Perangkat dan Alat Ukur
Alat-alat yang digunakan dalam percoobaan adalah sebagai berikut:

1. SOLTEQ Vapor Liquid Equilibrium, terdiri dari kondenser, evaporator, penampung produkbawah, pressure relief valve, control panel, top sampel collector, rotameter, dan heater.
2. Termometer Gelas
3. Gelas Ukur
4. Gelas Kimia
5. Refraktometer
6. Selang Air

3.2. Bahan
Campuran biner etanol/metanol/aseton air, untuk setiap percobaan dibutuhkan 5 L campuran.

3.3 Skema Alat Ebuliometer
Dalam percobaan ini, data yang diukur berupa data isobarik pada kondisi atmosfer. Pengambilan data kesetimbangan dilakukan dengan menggunakan alat ebuliometer seperti pada Gambar 3.1.
Gambar 3.1 Skema Alat Ebuliometer
BAB IV
PROSEDUR KERJA

4.1 Diagram Alir Percobaan
Secara umum, percobaan dilakukan dengan mengikuti langkah-langkah dalam diagram alir yang ditampilkan pada Gambar 4.1.

Gambar 4.1 Diagram Alir Percobaan
4.2 Prosedur Kerja Penggunaan Ebuliometer

Alat utama percobaan, yaitu ebuliometer, dioperasikan dengan mengikuti beberapa tahapan, sebagai berikut:

Start-up :
1. Cek kondisi semua valve, valve harus dalam keadaan tertutup.
2. Cek kondisi heater, heater harus dalam kondisi off.
3. Nyalakan alat dengan menyambungkannya dengan stop kontak.
4. Main switch dinyalakan.

Prosedur :
1. Buka penutup umpan, masukkan umpan, lalu tutup kembali penutup umpan tersebut.
2. Buka valve 13 dan valve 14, cek level dari umpan, pastikan level berada pada ¾ level maksimal, lalu tutup valve 13 dan valve 14 kembali.
3. Cek kondisi valve 8, pastikan valve 8 dalam kondisi terbuka agar berada pada tekanan atmosferik.
5. Buka valve 10, cek apakah air pendingin melaju antara 5-10 LVM dan tunggu hingga konstan. Tunggu hingga aliran mendekati konstan.
6. Set temperatur awal sebesar 100⁰C pada TT01.
7. Nyalakan heater.
8. Tunggu selama 5 menit, catat temperatur yang tertera pada TT02, lalu keluarkan sampel.
9. Untuk mengambil sampel yang berisi kondensat dari gas dengan cara:
 a. Buka valve 5 dan 6. Pastikan valve 5 terbuka hingga seluruh kondensat telah masuk, lalu tutup valve tersebut.
 b. Buka valve 7 untuk mengambil sampel.
10. Untuk mengambil sampel liquid dengan cara:
 a. Buka valve 12.
 b. Buka valve 4 dan valve 2.
 c. Tunggu sebentar, lalu tutup valve 2.
 d. Buka valve 3 untuk mengambil sampel.
Shut Down:

1. Matikan heater.
2. Buka valve 11.
3. Tunggu hingga angka yang tertera pada TT02 ≤ 50°C.
4. Buka valve 2 dan valve 3, tamping seluruh cairan yang ada dalam wadah yang disediakan.
5. Buka valve 6 dan valve 7, tamping seluruh cairan dan masukkan pada wadah cairan yang disediakan.
DAFTAR PUSTAKA

LAMPIRAN A

TABEL DATA MENTAH

<table>
<thead>
<tr>
<th>Komponen A</th>
<th>Komponen B</th>
</tr>
</thead>
<tbody>
<tr>
<td>=_________</td>
<td>=_________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Densitas A</th>
<th>Densitas B</th>
</tr>
</thead>
<tbody>
<tr>
<td>=_________</td>
<td>=_________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mr A</th>
<th>Mr B</th>
</tr>
</thead>
<tbody>
<tr>
<td>=_________</td>
<td>=_________</td>
</tr>
</tbody>
</table>

Tabel A.1 Kalibrasi Refraktometer

<table>
<thead>
<tr>
<th>Volume A</th>
<th>Volume B</th>
<th>Fraksi Mol</th>
<th>wt%</th>
<th>Indeks Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel A.2 Tabel Percobaan

<table>
<thead>
<tr>
<th>P</th>
<th>V_A (L)</th>
<th>V_B (L)</th>
<th>Temperatur (°C)</th>
<th>Indeks Bias</th>
<th>Komposisi (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Liquid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contoh:

Misal: Komponen A = Metanol 99,9% Komponen B = Air
Densitas A = 0,79 g/mL Densitas B = 1 g/mL
Mr A = 32,04 g/mol Mr B = 18 g/mol

Tabel A.3 Contoh Kalibrasi Refraktometer

<table>
<thead>
<tr>
<th>Volume A</th>
<th>Volume B</th>
<th>Fraksi Mol</th>
<th>wt%</th>
<th>Indeks Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>0.0000</td>
<td>0.00</td>
<td>1.3334</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0.0470</td>
<td>8.07</td>
<td>1.3354</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0.0999</td>
<td>16.49</td>
<td>1.3369</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0.1598</td>
<td>25.29</td>
<td>1.3404</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.2283</td>
<td>34.50</td>
<td>1.3414</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.3074</td>
<td>44.13</td>
<td>1.3425</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0.3997</td>
<td>54.23</td>
<td>1.3417</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0.5087</td>
<td>64.83</td>
<td>1.3406</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0.6397</td>
<td>75.96</td>
<td>1.3387</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.7998</td>
<td>87.67</td>
<td>1.3342</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1.0000</td>
<td>100.00</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Gambar A.1. Contoh Kurva Kalibrasi Refraktometer
Tabel A.4 Contoh Data Percobaan

<table>
<thead>
<tr>
<th>P (atm)</th>
<th>V_A (L)</th>
<th>V_B (L)</th>
<th>Temperatur (°C)</th>
<th>Indeks Bias</th>
<th>Komposisi (wt%)</th>
<th>Komposisi Literatur (wt%)</th>
<th>Eror (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liq</td>
<td>Vap</td>
<td>Liq</td>
<td>Vap</td>
<td>Liq</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td>86.2</td>
<td>83.3</td>
<td>1.3</td>
<td>379</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>82.8</td>
<td>79.9</td>
<td>1.3</td>
<td>394</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td>78.1</td>
<td>77.8</td>
<td>1.3</td>
<td>410</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>73.7</td>
<td>72.7</td>
<td>1.3</td>
<td>415</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>72.0</td>
<td>71.0</td>
<td>1.3</td>
<td>407</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td>70.1</td>
<td>69.3</td>
<td>1.3</td>
<td>371</td>
</tr>
</tbody>
</table>
LAMPIRAN B
PROSEDUR PERHITUNGAN

Pengolahan data yang diperlukan pada percobaan dapat dilakukan dengan mengikuti langkah berikut:

1. Siapkan grafik $Txysesuaidengan literatur$
2. Perhitungan Densitas:
 $$\rho_{campuran \ (pada \ suhu \ T)} = \frac{masa \ campuran}{massa \ air}.\rho_{air \ (pada \ suhu \ T)}$$
3. Perhitungan Fraksi Mol
 $$X_A = \frac{\frac{\%A\%_V\rho_A}{Mr_A}}{\left(\frac{\%A\%_V\rho_A}{Mr_A} + \frac{(1-\%A)\%_V\rho_B}{Mr_B}\right)} + \frac{\%B\%_V\rho_B}{Mr_B}$$
LEMBAR KENDALI KESELAMATAN KERJA

<table>
<thead>
<tr>
<th>No.</th>
<th>Bahan</th>
<th>Sifat Bahan</th>
<th>Tindakan Penanggulangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Air</td>
<td>Tidak berwarna</td>
<td>Tidak perlu penanganan khusus karena tidak berbahaya bagi tubuh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tidak berbau</td>
<td>Hindari zat tercecer di dekat sumber listrik.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tidak beracun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Titik didih : 100°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Titik leleh : 0°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stabil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Menghantarkan listrik</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Etanol</td>
<td>Cair</td>
<td>Pastikan wadah zat tertutup bila tidak digunakan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tidak berwarna</td>
<td>Simpan di tempat dengan ventilasi yang baik.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mudah menguap</td>
<td>Hindarkan dari api.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mudah terbakar baik dalam bentuk cair maupun gas</td>
<td>Hindari kontak dengan mata dan mulut.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berbau ringan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Titik didih : 78°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Titik leleh : -114°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Larut dalam air</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kejadian yang mungkin terjadi</th>
<th>Penanggulangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terhirupnya uap etanol</td>
<td>Segera bawa penderita ke ruangan dengan udara segar. Jika tidak bernafas, segera beri pernafasan buatan. Segera minta nasihat medis.</td>
</tr>
<tr>
<td>Larutan terpercik atau tumpah dari tabung reaksi</td>
<td>Bila mengenai tangan atau mata, segera bilas dengan air selama paling kurang 15 menit. Bila tertelan, segera hubungi medis.</td>
</tr>
<tr>
<td>Kontak arus pendek akibat instrumen yang menggunakan listrik terkena air</td>
<td>Segera putuskan hubungan arus listrik pada alat</td>
</tr>
</tbody>
</table>

Perlengkapan Keselamatan Kerja

- Jas lab
- Goggle
- Sarung tangan
- Sepatu
Persiapan Alat
- Pastikan selang kondensor pada alat tersambung dengan baik
- Pastikan semua valve tertutup pada awal percobaan, kecuali valve pengatur tekanan
- Pastikan listrik tersambung pada alat dengan baik dan jalur kabel tidak mengganggu

Kalibrasi dengan Refraktometer
- Pastikan listrik tersambung pada refraktometer dengan baik
- Berhati-hati dalam mengoleskan aseton dan sampel pada refraktometer

Pasca Percobaan
- Umpan dikuras dari ebuliometer setelah temperatur heater turun hingga di bawah 50°C
- Alat diperbolehkan dimatikan setelah temperatur kesetimbangan di bawah 50°C
- Putus hubungan listrik setelah alat telah di switch off
- Bilas tempat umpan dengan air bersih
- Matikan aliran dan rapikan selang kondensor
- Pastikan semua valve tertutup setelah semua aktivitas selesai dilakukan, kecuali valve pengatur tekanan

Percobaan
- Pastikan semua valve dibuka dan ditutup pada waktu yang tepat
- Pastikan heater menyala setelah umpan masuk ke dalam ebuliometer
- Pastikan kondensor mengalir selama percobaan

<table>
<thead>
<tr>
<th>Asisten</th>
<th>Pembimbing</th>
<th>Koordinator Lab TK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>